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RELAXATION PHENOMENA IN SATURATED POROUS MEDIA. LINEAR THEORY" 

O.YU. DINARIYEV and O.V. NIKOLAYEV 

Isothermal relaxation processes in a non-deformable porous 
specimen of finite size saturated with a weakly compressible liquid are 
considered. experiments with the establishment of stationary seepage 
of the liquid show (see Sect.2) that the non-stationary seepage 
equations describing the elastic flow model /l, 2/ do not apply for 
porous specimens with characteristic dimension of the order of several 
meters. Non-stationary processes in these specimens naturally should 
be described using more-general relaxation models of seepage /3, 4/. 
We investigate the general properties of the relaxation kernel 
characterizing the given "liquid-porous medium" system. A solution of 
the problem of establishment of stationary seepage is given. The 
theory developed in this paper is applied to analyse experimental 
results on non-stationary seepage of low-viscosity weakly compressible 
liquids. This leads to some general conclusions regarding the form of 
relaxation kernels for particular systems. 

1. Consider an isotropic homogeneous non-deformable porous medium that fills a bounded 
region D in the Euclidean space H" (n = 1,2,3). The values )L L: 1 and II = 2 correspond 
to one- and two-dimensional seepage problems. We assume that the boundary of the region dD 
is a Cl-submanifold in R”. 

The porous medium is saturated with a liquid. We will investigate processes in which 
the liquid density p is nearly equal to a constant pO, and we may accordingly use a linear 
expression for the pressure (E is the bulk modulus of elasticity of the liquid) 

P = PO + E (P - POYPO (1.1) 

In relaxation seepage theory /3, 4/, D'Arcy's law is generalized in the form 

u (to, r) = --h-y-' i K (to - t) G G (t, r)dt, G = p + cpp (1.2) 

Here u is the seepage velocity, k the permeability, 'p the gravitational potential, and 
u the viscosity of the liquid, which may be assumed constant. All integrals are between the 
limits from --oo to +co, unless otherwise specified. The kernel K = K (t) is independent 
of the spatial coordinates and characterizes the internal relaxation processes in the "porous 
medium-liquid" system. The function K = K(t) satisfies a number of conditions that follows 
from physical and thermodynamic considerations. Let us list these conditions. 

If VG varies over time, preserving a constant direction at a given point in space, we 
naturally assume that the corresponding seepage velocity points in the opposite direction at 
the given point at all instants of time. This assumption is equivalent to the following 
condition: 

1". K = K (1) is a non-negative function (possibly generalized) with dimensions of 
(time) -', 

For time-constant '7-G, the relationship (1.2)should reduce to D'Arcy's law, whence 

2". SK(t) dt = 1. 

The kernel K = K(t) describes the effect of the field TG on the seepage velocity 
". By the casuality principle, the field VG(t,r) cannot affect " (to7 r) for t > to. The 
values of VG(t,r) for t = t, may affect u (to, r) in a special, singular manner. We 
accordingly have the following condition. 

30. The support of the function K = K (t) lies on the halfline IO, fco). The func- 
tion K = K (t) may have a singular support - the point t 1 0. For example, D'Arcy's law 
is a special case of the law (1.2) for a kernel equal to the Dirac h-function. 

Since the effect of CG (t, r) on u (to, r) should decrease as the difference (to - t) 
increases, we naturally assume that 
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49. For large t, the function K = K (t) is smooth and rapidly decreasing. 
Now, consider the quantity 

A = - j u (t. r) VG (t, r) dt (1.3) 

for an arbitrary vector function VG (t, r) rapidly decreasing as 1 t I--, +m. The 
quantity A is proportional to the work of the friction forces of the liquid with the skeleton 
of the rock in a porous particle. By the second law of thermodynamics, A is always non- 

negative. Hence it follows that 
5". For any function f = f(t) that decreases rapidly as ItI--tfoo, we have the 

inequality 

Sdt, 5 dt,K (tr - tz) f @J f @J 2 0 

For non-zero functions f=f(t), the inequality should be strict. 
Conditions lo-5" lead to a number of corollaries regarding the Fourier transform of the 

kernel K = K (t), 

KF (co) = le-“cof K (t) dt, o E R 

By condition 2", KF (0) = 1. Now, since K = K(t) is real valued, we have 

KF (0) = KF (-w), 61 E R (1.4) 

By condition 1" and Bochner's theorem /5/ it follows that Kp=Kp(u) is a positive 

definite function. This means that for any complex numbers zj and any real numbers oj(j: 1, 
. .( IV), we have the inequality 

N 

Z 
i,j=l 

ZiZjKF (O< - Oj) > 0 (1.5) 

Let n = 2, O1 = 0, o2 = 0. From (1.4) and (1.5) it follows that for any complex numbers 

Z1 and z, we have the inequality 

(I 21 I ’ + I z2 ?)KF (0) + 2Re (~AKF (a)) > 0 

which is equivalent to the inequality 

From 3O it follows 
lower half-plane of the 
to the complex plane 

1 KF(o))<~,oE R 

that the function KF = KF (a) has 
complex plane o /6/. Relationship 

Kx) = KF (--a), o E C 

(1.6) 

an analytic continuation in the 
(1.4) is accordingly continued 

(1.7) 

In terms of Fourier transforms, condition 5O combined with (1.4) is equivalent to the 
inequality 

Since fF(a) is arbitrary we thus obtain that Re&(o) is non-negative for 0 > 0. 
In what follows, we will use a stronger inequality 

Re KF (co) > 0, 0 E R (1.8) 

which simplifies the analysis and is apparently always true in applications. 
By conditions 34 and 4', the function KF (0) tends to the same constant for o-t*m. 

By this remark and inequality (1.8), it follows from general theory /7/ that the holomorphic 
function KF = KF(o) has no zeros for Imw<O. Thus, the complex function 
is a conformal mapping of the half-plane 

KF = KF (0) 
Imo<O on some region in the circle 

Rez>O, zE C. 
IZlCl, 

In what follows we assume that the function KF = KF (0) is analytically continuable 
to the upper half-plane of the complex plane and is a meromorphic function /7/. There are no 
poles if KF(u) = 1, i.e., when there are no internal relaxation processes. 

Let S,, S, be non-empty open subsets in aD, 
aD coincide and constitute a 

such that the boundaries of S, and S, in 
Cl-submanifold of the manifold aD. 

Consider the following auxiliary problem of determining the function fE W,l(D): 



364 

(1 _!I) 

Here A,L is the n-dimensional Laplace operator; the notation of functional spaces is 
from /8/. 

Problem (1.9) has a unique solution /a/, which is representable in the form f c I-If, r 
L,f,, where Z,, and L, are appropriate linear operators. 

Let us now investigate the problem of establishing stationary seepage in the following 
setting. Assume that for t (0 the liquid in the porous medium is at rest, P IL<,, == PO, 
and for t>o the pressure and flow distributions are specified discontinuously in time on 
the boundary of the porous specimen (n is the inner normal to 8D) in the form 

The dynamics of pressure variation for t > 0 in the porous specimen is determined 

by the equation of continuity 

a (mpyat + T (PU) :-= 0 (1.11) 

where m is the porosity, and also be relationships (1.1) and (1.2). 
Gravitational effects are ignored. From (l.l), (1.2), and (l-11), we obtain the 

equation 

IsE 
+(toy r)=xSK(t,-t)A,p(t,r)dt, I’m x=- 

The boundary conditions (1.10) are transformed to 

t 

PI& = Rl, s 
K(t--t,)~(t,,r)(s,dt”=--gg,, t=_O 

-m 

(1.12) 

(1.13) 

Fourier-Laplace transforming by t the equations (1.12) and (1.13) /6/, we obtain 

(in - x KF (~1 4,) PF = po 

(1.14) 

We introduce a new unknown function G :- G(o), r), defined by 

pp=G+H. H =-_tL,g++L,g, 
F 

Then from (1.14) we obtain 

(1.15) 

(io -x Kp (o)A,)G = p. + ioH (1.16) 

G js, = 0, aGian is, = 0 (1.17) 

The pressure P =IJ(t,r) can be recovered from PF = PF h r) using the formula 

P (6 r) =(2n)-'Se'U'+erpF(0 - i&, r)& (1.18) 

where e is an arbitrary positive quantity. The integral in (1.18) can be evaluated using 
the residue formula 

p (t, r) = i 2 Resoj [h’p~ (0, r)] 
j 

(1.19) 

where co, are the poles of the function pp(o,r). From (1.14)-(1.16) we see that the poles 
are divided into three subsets: a) the single point 

tOhle equation Kp (0) = 0, and c) anj 
o0 = 0, b) - the roots of 

- the values of o for which the opz:'ator (io - xKp (w) An) 
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does not have an inverse. In the latter case, A,, is a selfadjoint operator in L, (D) 
defined by the boundary conditions (1.17) /a/. 

The term corresponding to o,, in (1.19) can be separated in explicit form. Then 

p (t, r) = L,g, - pPL,g, t R (t, r) 

R(t,r) = i 2 Res,,j[e'a*pr(o. r)] + i xRes,,j[eiofpr(o,r)] 
i j 

We see that the complex numbers %jl Oaj have positive imaginary parts, and therefore 
the term R (t, r) describes relaxation of the system to steady-state seepage. 

Indeed, the fact that the poles wlj lie in the upper half-plane of the complex plane 
follows from the previous assumptions regarding the function K,= KB(m). On the other hand, 
let ozj be a number that satisfies one of the equations 

io+x KF(~)X~=(I,0<hi<h~+,(1=0,1.2,...) (1.20) 

where hl is the spectrum of the operator (p&J. If Im 02j < 0, then from (1.20) we obtain 
the inequality 

Re RF (Ozj) = (%hl)-'Im ozj < 0 

which contradicts (1.8). 
Assume that the relaxation to steady-state seepage is observed experimentally. Then, 

from the complete pressure field p(t,r) we can separate the term R (t, r), and applying 
Fourier analysis to the function R (t,r) separate the complex frequencies Olj and oaj. These 
frequencies correspond to a denumerable set of relaxation processes in the porous medium, 
and the quantities 7,j = (Im O,j)-l are the corresponding relaxation times. (Note that by 

'("J,',, (1.20), the sets 52, = {olj), Q, = {o,~) are invariant under the transformation in 

w. 
In an experiment, it is of course easiest to separate the process with the largest ra1 

(the smallest Imoaj), because the modes with lower relaxation times "die out" faster. We 
will show that at least for large specimens the main relaxation process has a pure imaginary 
complex frequency, which is given by the equation 

icy, + xK~ (a) h, = 0 (1.21) 

Consider specimens of the porous medium which have identical shape but different 
characteristic dimensions L. We see that h, depends on L in a fairly simple manner,& (L) = 

h (L,)(L,IL)2. In Eq.tl.21) set 0 = iy and F(y)= KF (iy). Then (1.21) takes the form 

x&i = Y/F (Y) (1.22) 

Since the right-hand side of Eq.cl.22) vanishes for y=o and increases monotonically 
for small positive y, Eq.tl.22) has a real solution at least for sufficiently large L with 
the asymptotic expression 

y, = XL, (L) _t 0 (L-4) = xh, (Lo)(L,IL)2 + 0 (L-4) 

The corresponding relaxation time 

rc, = l/y, (1.23) 

for sufficiently large L is greater than the relaxation times produced by other solutions of 
Eq.tl.22) or by solutions of Eq.(1.20) for I#O. Since the relaxation times produced by 
the equation KF(o)= 0 are independent of L, then for large specimens formula (1.23) gives 
the leading relaxation time. 

Let 7' = (x&)-'. We see from (1.22) that 7' is identical with 7, when FS 1, i.e., 
when there are no internal relaxation processes in the "porous medium-liquid" system. There- 
fore the difference r = z, -2' characterizes the deviat ion of seepage from elast ic flow. 
For large specimens, 

r = -rtK(t)dt+O(L-B) (1.24) 
0 

Thus observations of the establishment of the stationary mode in principle can be used 
to obtain the required information for the recovery of the relaxation kernel K = K (t). 
For example, if we observe the leading relaxation process on specimens of different size, 
then from (1.22) we can obtain the function F(Y) and then apply analytic continuation to 
obtain the function KF(o) and hence the kernel K (1). In a more special case, when we 
know the general functional form of the kernel K = K (t) with one arbitrary parameter, 
this parameter may be estimated by experimental measurement of the parameter 7. 



2. In order to determine the internal relaxation characteristics of the "porous medium- 
liquid" system, we made observations of the establishment of stationary seepage of acetone 
and toluene in a cylindrical specimen formed by dense packing of ground quartz sand. The 
length of the specimen was I. :I m, its diameter d = 2.6~111~' m, porosity V! (, ‘1"". I _ Before 
filling with liquid, all the components of the measuring system and the porous specimen were 
placed in a vacuum chamber, and the liquid was initially degassed. In the notation of Sect.1, 
we have n 1. D ~- IO, Ll. ,S1 ~- (I)}, S, (1,). The pressure in SI and the flow in S, were given, 
and we measured the pressure 0 (0 in sl. which exponentially approached a constant level 
Pe. 

The experimental dependences were analysed by Pade-approximation of the Laplace transform 
of the function P (1) /9/. The analysis produced the leading relaxation time TV. Once 
the system has stabilized in the stationary mode, we determined the permeability k. Then, 
using the spectral expression h( _ In (El -1. 1)/(2L)j2 (1 = 0, 1, .I, we calculated T' and T. The 
experiments were conducted for various volumetric flow rates Q. The initial pressure in all 
experiments was set at PO ~- 12.4 MPa. The results are summarized in Table 1 (the first three 
lines for toluene, and the last three lines for acetone). 

v IO’, m' /set 

0.083 12.8 
1.67 19.3 
3.33 26.4 
6.67 27.4 
3.40 20.1 
0.22 12.9 

It is remarkable that in all e: cperiments we obtained T> 

Pi, MPa T,, set I 
:i 
800 
666 
614 
fio4 

II I 
8!1 
RI) 
44 
44 
44 

- 

C 

- 

0 

T. set 
-- 

609 
671 
710 
622 
970 
560 

(contrary to (1.24)). 
According to (1.22), the inequality r>O is possible only if 

0 < k‘ (l.Ty) < 1 (2.1) 

Consider the simplest relaxation kernels proposed in /3/. Their Fourier transforms are 

The kernel (2.2) is formally consistent with (2.1), when T~=T. However, the kernel 
(2.2) is inconsistent with (1.6), i.e., with the condition of positive definiteness. The 
kernel (2.3) satisfies all the general conditions lo-5" imposed on kernels, but is incon- 
sistent with (2.1). 

The kernel (2.4) satisfies the conditions lo-5" if T,,<T~. Here, FS (Y) ;‘K3~ (iy) also 
satisfies the inequality (2.1) for y>l,‘Tp. However, the region Y > UTp corresponds to faster 
relaxation processes than the relaxation process associated with the zero of the function 
F, = FJ (Y) : Y,= l/r,. Therefore, if we use the kernel (2.4) to interpret our experimental data, 
we must simply set rl =r,,. If we additionally take % ZZ 2t, in accordance with the results of 
/3/, then the parameters of the relaxation kernel are fully defined. 

This interpretation of the experimental results using the kernel (2.4) is not entirely 
satisfactory. Indeed, it assumes that the length L of the porous specimen accidentally falls 
in the range where the relaxation to steady-state seepage is dominated by the internal 
relaxation processes in the "porous medium-liquid" system. A more natural assumption is that 
the function F =: F (y) is positive in some interval Y E (0, a), a > 0, F (a) = 0, and for 
y E (0, a) the function HI (Y) = Y/F (Y) is monotone increasing. Then the leading relaxation 
time is given by Eqs.(1.22) and (1.23). 

The graphical solution of Eq.(1.22) for the chosen function p P(y) is qualitatively 
shown in the figure, where Curves 1 and 2 correspond to F (Y) and y/F (y). If we approximate 
F = F (y) near y;a by the expression F(y)- --K,(y - a), x,)0. then Eq.(1.22) can be 
used to find an asymptotic solution for small L, 

T, == a-1 _I- (h,&‘T’ + 0 (La) 

The available experimental results are insufficient in order to determine the parameters 
A, and a. Nevertheless, if we assume that the specimen is sufficiently small, we obain that 
a S i/r,.. 
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The theoretical and experimental studies thus indicate 

2 I 
that non-stationary seepage of liquids should be described in 
the framework of relaxation seepage theory. The elastic flow 

llz' , equations for processes with characteristic times of the order 
of 10' give results at variance with the experimental findings. 

1 Experimental studies also indicate that the Fourier transform 
of the relaxation kernel should take values in (0, 1) over a 
certain interval of the imaginary axis. This condition con- 

0 siderably restricts the class of physically meaningful relax- 
ation kernels. 

l/5 a y 

Fig.1 
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